{-# OPTIONS --cubical-compatible #-}
module Padova2025.ProvingBasics.Equality.Reasoning.Core where
open import Padova2025.ProvingBasics.Equality.Base
open import Padova2025.ProvingBasics.Equality.General
infix 3 _β
infixr 2 _β‘β¨_β©_ _β‘Λβ¨_β©_ _β‘β¨β©_
infix 1 begin_
_β‘β¨_β©_ : {A : Set} {y z : A} β (x : A) β x β‘ y β y β‘ z β x β‘ z
x β‘β¨ p β© q = trans p q
_β‘Λβ¨_β©_ : {A : Set} {y z : A} β (x : A) β y β‘ x β y β‘ z β x β‘ z
x β‘Λβ¨ p β© q = trans (sym p) q
_β‘β¨β©_ : {A : Set} {y : A} β (x : A) β x β‘ y β x β‘ y
x β‘β¨β© q = q
_β : {A : Set} β (x : A) β x β‘ x
x β = refl
begin_ : {A : Set} {x y : A} β x β‘ y β x β‘ y
begin p = p