📥 Download raw
module Padova2025.ComputationalContent.DoubleNegation ( : Set) where

Sarcastic interpretation of classical logic

open import Padova2025.ProvingBasics.Connectives.Disjunction
infix 3 ¬_
¬_ : Set  Set  -- enter `¬` as `\neg`
¬ P = (P  )
return : {A : Set}  A  ¬ ¬ A
return = {!!}
⊥-elim : {A : Set}    ¬ ¬ A
⊥-elim = {!!}
escape : ¬ ¬   
escape = {!!}
oracle : {A : Set}  ¬ ¬ (A  ¬ A)
oracle = {!!}
infixl 1 _>>=_ _⟫=_
_>>=_ : {A B : Set}  ¬ ¬ A  (A  ¬ ¬ B)  ¬ ¬ B
_>>=_ = {!!}
_⟫=_ : {A B : Set}  ¬ ¬ A  (A  ¬ ¬ B)  ¬ ¬ B
_⟫=_ = _>>=_