module Padova2025.ComputationalContent.DoubleNegation (⊥ : Set) where
Sarcastic
interpretation of classical logic
open import Padova2025.ProvingBasics.Connectives.Disjunction
infix 3 ¬_
¬_ : Set → Set
¬ P = (P → ⊥)
return : {A : Set} → A → ¬ ¬ A
return = {!!}
⊥-elim : {A : Set} → ⊥ → ¬ ¬ A
⊥-elim = {!!}
escape : ¬ ¬ ⊥ → ⊥
escape = {!!}
oracle : {A : Set} → ¬ ¬ (A ⊎ ¬ A)
oracle = {!!}
infixl 1 _>>=_ _⟫=_
_>>=_ : {A B : Set} → ¬ ¬ A → (A → ¬ ¬ B) → ¬ ¬ B
_>>=_ = {!!}
_⟫=_ : {A B : Set} → ¬ ¬ A → (A → ¬ ¬ B) → ¬ ¬ B
_⟫=_ = _>>=_