📥 Download raw
module Padova2025.ComputationalContent.Blueprints.Minima where

Minima

open import Padova2025.ProgrammingBasics.Naturals.Base
open import Padova2025.ProvingBasics.Negation
open import Padova2025.ProvingBasics.Termination.Ordering
open import Padova2025.ProvingBasics.Termination.WellFounded.Base
open import Padova2025.ProvingBasics.Connectives.Disjunction
open import Padova2025.ProvingBasics.Connectives.Existential
open import Padova2025.ProvingBasics.Connectives.Conjunction
postulate
  oracle : {A : Set}  A  ¬ A
go : (α :   )  (i : )  Acc _<'_ (α i)  Σ[ i   ] ((j : )  α i  α j)
go α i (acc f) with oracle {Σ[ j   ] α j < α i}
... | left  (j , p) = {!!}
... | right q       = {!!}
  where
  h : (j : )  α i  α j
  h j with ≤-<-connex (α i) (α j)
  ... | left  αi≤αj = {!!}
  ... | right αj<αi = {!!}
minimum : (α :   )  Σ[ i   ] ((j : )  α i  α j)
minimum = {!!}